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Model for the potential barrier depth along 
the grain boundaries of an ultrathin tin dioxide 
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A potential barrier model along the grain boundaries in ultrathin tin dioxide (Sn02) gas sen- 
sors is presented. It is assumed that the negatively charged oxygens are adsorbed only on the 
grain boundaries. The potential barrier depth is expressed as functions of grain size, donor 
concentration and surface coverage of adsorbed oxygen ions at the boundaries. A direct con- 
sequence is that the conduction electrons are effectively confined in a grain when the film 
thickness becomes smaller than a critical value. This indicates a drastic increase in resistivity 
with decreasing film thickness in air, and thus an occurrence of an extremely high gas 
sensitivity. 

1. In troduct ion  
It is generally accepted that the charged species such 
as O -  and O2 are adsorbed on the SnO 2 surface in air 
[1]. This trapping o f  conduction electrons and the 
resulting electrostatic potential induces an electron- 
depleted region, thus increasing resistivity parallel to 
the surface. In our previous studies of the thickness 
dependence of sensor properties in SnO 2 thin films [2, 
3], a model was required which can interpret a drastic 
resistivity increase in air with decreasing thickness 
from about 100-10 nm. So far, most models proposed 
for semiconductor gas sensors assume the sites of 
ionosorbed oxygens to be distributed homogeneously 
on the whole surface of films or sintered porous bodies 
[4-6].  These models seem to produce potential bar- 
riers too small to interpret our experimental results. A 
mddN which assumes a distribution of ionosorbed 
oxygens only on the grain boundaries is proposed. 
The present model expresses the potential barrier 
depth along the grain boundaries as functions of grain 
size, donor concentration and surface coverage. An 
important result is that there exists a critical film 
thickness below which the conduction electrons are 
confined in a grain. 

2. Theory  
2.1, Po ten t ia l  at t he  su r f ace  
Yamazoe e t  a l .  [1] have shown that the surface cover- 
age, 0o, defined as the number of adsorbed 0 2 
molecules per surface tin atom, is less than 1%. 
Among the adsorbed oxygens, only those of negatively 
charged ions are our concern. Thus, for adsorbed O -  
or 0 2 ,  we define 0 instead of 0 o. If the mean distance 
of the surface tin atom is do and that of charged 
oxygens is d, in the case when they are distributed 
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uniformly on the whole surface, then, by definition 

o - d2 (1) 

Because the lattice constant of the futile structure is 
a = 0.474 nm and c = 0.319 nm [7], do = 0.4 nm is a 
good approximation. Then we see, for example, that d 
becomes 4, 12.6 and 40rim for 0 = 1%, 0.1% and 
0.01%, respectively. For the construction of grains, let 
us consider an array of parallel grain boundaries at 
the surface; the boundaries being infinitely 10ng and 
with:'a uniform spacing, l, between them. Thus an 

0r of square grains of length, l, is formed from these 
~arailel boundaries as depicted schematically in Fig. 1. 
We also assume that the charged oxygens are all 
concentrated on these square boundaries. Therefore, 
the charge density, cy, of a grain boundary is 

= _ e l / 2 d  2 

= - e O l / 2 d  2 (2) 

where e is the charge of an electron. 

7, 

Figure 1 Surface grain structure. Two sets of parallel grain bound- 
aries with a uniform spacing, l, between them form rectangular 
grains. 
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Now we are ready to formulate the surface poten- 
tial, qbs. The potential from a single straight boundary 
lying on the y-axis is 

~b~ = - (o/2rte o)ln(x/x o) (3) 

for 0 <~ x ~< x0. Here % is the dielectric constant in air 
and x o is a constant to be determined from the bound- 
ary condition. We choose Xo = I/2 so that dO s = 0 at 
the middle of the two parallel boundaries. Then 

qb~ = - (o/2rCeo)ln(2x/l) (4) 

for x <<. l/2. This corresponds to the nearest neighbour 
approximation; charges further than I/2 have no influ- 
ence on the potential. This would be a good approx- 
imation, because an important potential is formed 
only near the boundary 1 >> x/xo.  Considering the 
periodic nature of the potential, it would be better to 
replace Equation 4 with 

qb~ = - (o/27te o) ln(sinrtx/l) (5) 

This gives the potential curve as shown schematically 
in Fig. 2. For  convenience, we expand the term 
tn(sin=x/l)  as the Fourier cosine series 

ln[sin(rtx/ l)]  = (ao/2) + ~ a,,cos(2rtmx/I) (6) 
m = l  

1/2 

a,. = (4/1) ln(s in~x/ l )cos(2r tmx/ l )dx  (7) 
do 

where m is the harmonic number. 
Integration of Equation 7 can be carried out with 

the help of the following formula: 

f~/2 ln(sinx) dx - (rc/4m) (8) cos(2mx) 

and yields a,, = - 1/m and a o = - 1.386 294. 

2.2. Bulk potential of one-dimensional 
boundaries 

Let us assume that the donor concentration, Nd, is 
constant throughout the film and that all of them are 
singly ionized. For  parallel boundaries along the y- 
axis, the bulk potential qb b is uniform along the y-axis 
and it must satisfy the following Poisson's equation in 
the region where electrons are depleted 

V2qbb(x,z) = -- (ega/e)  (9) 

>x 
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V 

Figure 2 Surface potential of Equation 5. Charged grain boundaries 
extend parallel to the y-axis. 
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where e is the dielectric constant of the film. The 
boundary condition is 

~b(x, 0) = ~s (10) 

To solve Equation 9, we make use of the principle of 
snperposition and assume 

qbb(x,z) = qbbl(X,Z) + qbb2(Z) (11) 

VZq~bl(X,Z) = 0 (12) 

V2qbb2(Z) = - (eNd/e) (13) 

It is natural to assume that d~b 1 has the same period- 
icity with qb~ along the x-axis, thus we might try terms 
like 

~bl(Xl Z) = ~ d~blm(X)Fm(Z ) (14) 
m=O 

(Pbl= = P,,cos(2rcmx/l) (15) 

Substituting Equations 14 and 15 into Equation 12, 
we obtain 

d2Fm(z)/dz 2 = (2nm/l)2F,,,(z) (16) 

So we have 

Fo(z)  = B'z + C' (17) 

for m = 0, and 

F,,,(z) = Qmexp( - 2rcmz/1) (18) 

for m>~ 1. 
Equation 13 gives 

dObz(z) = -- (eNd/2e)z z + B"z  + C" (19) 

Thus, the solution of Equation 9 is expressed as the 
sum of ~bbl and qbbz as 

qbb(x, z) = ~ A,,exp( - 2runz/l)cos(2rcmx/l) 
m = l  

-- (eNa/2e)z 2 + Bz + C (20) 

Equation 20 must satisfy the boundary condition of 
Equation 10, so putting z -~ 0, it becomes 

qbb(X, 0) = ~ A=cos(2nmx/l)  + C (21) 
~ , l=1  

Comparing this with Equations 5 and 6, we find the 
constants to be 

and 

(Ya m 
A m - (22) 

2~eo 

C - era~ (23) 
4;~g o 

Equation 20 then gives 

~b(x,  z) = 

- (~/2~eo) ~, a,. exp( - 2rcmz/l) cos (2nmx/l) 
m = l  

- (eNa/2e)z z + Bz - (Oao/4~eo) (24) 

The constant B is determined from the simplified 
condition that the potential must smoothly vanish to 
zero at x = 0 and z = z o. This condition would be 
enough to obtain the right value of the potential depth 



just beneath a boundary .  So we have 

q b(0, zo) = 0 
and 

(25) 

d b(0, Zo) 
- 0 ( 2 6 )  

dz 

Trying Equat ion  26 in Equat ion  24, we have the 
constant  

B = - (cr/~ol) ~ ammexp( - 2r~mzo/l ) 
m = l  

+ (eNdZo/e) (27) 

Substituting this into Equat ion  24, we can solve Equa-  
tion 25. We rewrite the solution referring to a,, = 

- 1/m and Equat ion  2. It  gives 

[( l /m) + ( 2 1 t z o / l ) ] e x p ( -  2rCmzo/l ) 
m = l  

- (2rteod~Udz~/eOl - (ao/2) = 0 (28) 

This gives z o and once Zo is determined, the potential  
in the xz-plane can similarly be obtained by substitut- 
ing Equat ion  27 into Equat ion  24. 

The result is 

/4rc~ o d~ "~ 

~ [ ( 1 ) ( 2 r c m x ) ( 2 n m z )  
~=1 m cos ~ exp -- l 

+ t w e x p L  

( 2 ~  o do 2 g d ~ ao 
" )zt zo'  - z) (29) 

2 

Equat ion  29 is a fundamental  one correlating the 
bulk potential  to  a depth of zero potential  Zo at the 
cross-point,  grain size l, surface coverage 0 and d o n o r  
concentra t ion Nd. 

In the real sensor operation,  temperture T is gen- 
erally kept in the order  of 100 K. Therefore, we then 
add the effect of  thermal energy on the potential  
depth. The condit ion is that  thermal energy E of an 
electron in one dimensional mot ion  becomes equal to 
the potential energy at the depth z. Then 

k T  
E - 2 - eqbb(X,Z) (30) 

Inserting Equat ion  30 into Equat ion  29, we get 

[(1/m)cos(27tmx/ l )exp(  - 2rrmz/l) 
m = l  

+ (2rtz/l)exp( - 27zmzo/l)] 

- (2rc~od2Nd/~Ol)z(2zo - z) - (ao/2) 

- (2~%dZokT/e20l )  = 0 (31) 

where a o = - 1.386 294. 

3. A n a l y s i s  o f  t h e  t h e o r y  
3.1. One-dimensional boundaries 
We are now ready to practice the numerical 
calculation. Let us begin with the depth of  zero 

potential, Zo, using Equat ion  28 with the constants 
% = 8 . 8 5 4 1 9 x 1 0 - 1 Z F m  -a, e = 1 3 . 5 %  [8], k =  
1.38066 x 10 23 J K  -1 and d o = 0.4rim. Summing m 
up to 500, we can obtain the potential depth z in the 
xz-plane according to Equat ion 31; z corresponds to 
the barrier depth against electrical conduct ion  at elev- 
ated temperatures. For  a grain boundary  of 1 = 
1000nm with 0 = 0 . 0 8 % ,  the barrier depth is 
plotted in Fig. 3 as functions of distance and donor  
concentra t ion for 573 K. The values obtained are ac- 
ceptable. It indicates that impor tant  potential spreads 
only within the region very close to boundaries.  For  
application to square grains, it is necessary to consider 
the conduct ion  along a direction which crosses the 
boundaries  as illustrated in Fig. 4. When  a film thick- 
ness is larger than the barrier depth just beneath a 
boundary  (x = 0), which we denote by z = zc, the 
conduct ion  electron can move freely at the bo t tom 

Distance , x ( n m )  
0 I00 200 300 

E I / . . _ \ 0  " 2oVNS' /,o" 

$ 5 o  

m 6O 
! I 

Figure 3 Barrier depth at 300 ~ as functions of distance and donor 
concentration for l = 1000 nm and 0 = 0.08%. 
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Figure 4 Schematic representation of barrier depth, film thickness 
and motion of electrons in a direction which crosses boundaries. (a) 
When films are thicker than barrier depth, electrons can move freely 
at the bottom part. (b) Electrons are confined in a grain in films 
thinner than barrier depth. 
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part  of the film (Fig. 4a). On the other hand, electrons 
are confined in a grain in films thinner than zc. Thus 
we see that the potential barrier depth, zc, corresponds 
to critical film thickness below which conduction can- 
not occur. Then we need to examine the effect of 
temperature on this barrier depth. 

The thermal term in Equation 31 is expressed, using 
the number  of electrons per unit boundary length, n, 

n = m/2do ~ (32) 

as 2 ~ % d ~ k T / e Z e l  = x % k T / n e  2. If we limit the range 
of n from 0.25-25 electrons per nm, the thermal term 
gives the largest value of 0.03429 when n = 0.25 for 
T = 573 K. The value is very small compared with 
- ao/2  = 0.693 15. In fact, temperature dependence 

of barrier depth zc is small even at elevated temper- 
ature of 800 K as shown in Fig. 5 for I = 1000 nm and 
~) = 0.08%. So, the following discussion assumes a 
constant temperature of 573 K. Fig. 6 shows the bar- 
rier depth as functions of grain size and donor concen- 
tration at a given surface coverage of 0 = 0.008%, 
0.08% and 0.8%, respectively. In the figure, upper and 
lower limits of curves correspond to n = 0.25 and 25 
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Figure 5 Tempera tu re  dependence  of bar r ie r  dep th  for l = 1000 nm 
and  0 = 0.08%. 
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Figure 6 Barr ier  dep th  as funct ions of g ra in  size and  donor  concen-  

t r a t ion  at  300 ~ (a) 0 = 0.008%, (b) 0 = 0.08%, (c) 0 = 0.8%. 

electrons/nm. The upper limit may seem a little denser 
than expected from the line boundary model. How- 
ever, real boundaries are more comp!jcated than a 
mere line, and so we prefer including such a denser 
situation. It is evident that the barrier depth increases 
rapidly with increasing grain size and decreasing 
donor concentration. Fig. 7 gives the barrier depth as 
functions of donor concentration and surface coverage 
for l = 1000 nm. It is noted that a lower, donor con- 
centration gives a steeper increase in barrier depth 
with increased surface coverage compared with a 
higher donor concentration. 

3.2 R e c t a n g u l a r  g ra ins  
The principle Of superposition tells us that the bulk 
potential in rectangular grains, {b(X, y, Z), can be ex- 
pressed as the sum of potential from one-dimensional 
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Figure 7 Barrier depth as functions of donor concentration and 
surface coverage at 300 ~ for l = 1000 nm. 

grain boundaries crossing at right angles 

r y, z) = Cb(x, z) + Cdy,  z) (33) 

Thus numerical solution of the potential barrier depth 
is readily obtained from our previous results. The 
potential barrier curve surrounding a grain is illustra- 
ted schematically in Fig. 8. Thus we come across the 
same conclusion as in Section 3.1, that zc corresponds 
to the critical film thickness for electrical conduction 
in any direction parallel to the surface. Having under- 
stood the importance of the barrier depth, zc, let us 
now try to explain our experimental results in ultra- 
thin SnO2 gas sensors obtained against 0.5% H 2 at 
300~ However, the discussion is only qualitative, 
because we do not have exact values of grain size, 
donor concentration and surface coverage. So far, 
experiments showed two prominent features in ultra- 
thin sensors in air. One is a highly constant resistivity 
in films thinner than about  10 nm [3] and the other is 
a steeply increasing resistivity with annealing time [2] 
as depicted schematically in Fig. 9. The former indic- 
ates that the barrier depth, zc, is about 10 nm. For the 
latter, we observed a resistivity increase of more than 
four orders of magnitude when about 17 nm thick 
films were annealed for 100 h at 500~ in air. The 
slope became steeper with prolonged annealing time. 
This enormous change can be interpreted as a result of 
increased barrier depth. Suppose a film is several times 

(o) 

Z 

Film thickness 

(b) 

Annealing time 

Figure 9 Schematic representation of resistivity behaviour in ultra- 
thin SnOz films in air at 300 ~ (a) Resistivity increases steepy with 
decreasing film thickness and remains at a high value when films 
become thinner than about 10 nm [3]. (b) Resistivity increases more 
and more sharply with prolonged annealing time at 500~ in 
15 18 nm thick films [2]. 

thicker than zc at the beginning of annealing. Resistiv- 
ity will increase with increasing zc up to a depth a little 
smaller than about 17 nm. Further increase in z c will 
cause a steeper increase in resistivity, as experiment 
revealed. Increase in zc is a result of grain growth, 
donor annihilation or increased surface coverage after 
annealing, as Figs 6 and 7 predict. It is not certain 
whether or not the surface coverage increases by an- 
nealing. For further discussions, we need observation 
of grain boundaries and detailed electrical measure- 
ments to determine the donor concentration and 
mobility in ultrathin films. 

Q-O- O- O- O- O- O- 5 0 -  

_o-O  
o 7 o -  o- o- o- 

Figure 8 Schematic illustration of barrier depth variation under 
grain boundaries in a rectangular grain. 

4 .  C o n c l u s i o n  
A potential barrier model is proposed for ultrathin 
SnO 2 gas sensors. The model assumes rectangular 
grain boundaries on which all ionosorbed oxygens 
concentrate. Potential in the film is expressed as func- 
tions of grain size, donor concentration and surface 
coverage. The model yields an acceptable value of 
potential barrier depth which corresponds to critical 
film thickness. Below the critical thickness, electrical 
conduction parallel to the surface becomes impossible 
and electrons are confined in a grain. The potential 
barrier depth becomes larger with grain growth, 
donor annihilation and increased surface coverage. 
The model predicts a high resistivity for films thinner 
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than a critical value and a larger rate of increasing 
resistivity with prolonged anneading time for films sev- 
eral times thicker than the critical thickness initially. 
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