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Model for the potential barrier depth along
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A potential barrier model along the grain boundaries in ultrathin tin dioxide (SnQ,) gas sen-
sors is presented. It is assumed that the negatively charged oxygens are adsorbed only on the
grain boundaries. The potential barrier depth is expressed as functions of grain size, donor
concentration and surface coverage of adsorbed oxygen ions at the boundaries. A direct con-
sequence is that the conduction electrons are effectively confined in a grain when the film
thickness becomes smaller than a critical value. This indicates a drastic increase in resistivity
with decreasing film thickness in air, and thus an occurrence of an extremely high gas

sensitivity.

1. Introduction

It is generally accepted that the charged species such
as O~ and O, are adsorbed on the SnO, surface in air
[1]. This trapping of conduction clectrons and the
resulting electrostatic potential induces an electron—
depleted region, thus increasing resistivity parallel to
the surface. In our previous studies of the thickness
dependence of sensor properties in SnO, thin films [2,
3], a model was required which can interpret a drastic
resistivity increase in air with decreasing thickness
from about 100-10 nm. So far, most models proposed
for semiconductor gas sensors assume the sites of
ionosorbed oxygens to be distributed homogeneously
on the whole surface of films or sintered porous bodies
[4-6]. These models seem to produce potential bar-
riers too small to interpret our experimental results. A
model which assumes a distribution of ionosorbed
oxygens only on the grain boundaries is proposed.
The present model expresses the potential barrier
depth along the grain boundaries as functions of grain
size, donor concentration and surface coverage. An
important result is that there exists a critical film
thickness below which the conduction electrons are
confined in a grain.

2. Theory

2.1. Potential at the surface

Yamazoe et al. [ 1] have shown that the surface cover-
age, 0,, defined as the number of adsorbed O,
molecules per surface tin atom, is less than 1%.
Among the adsorbed oxygens, only those of negatively
charged ions are our concern. Thus, for adsorbed O~
or O, , we define 0 instead of 0,,. If the mean distance
of the surface tin atom is d, and that of charged
oxygens is d, in the case when they are distributed
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uniformly on the whole surface, then, by definition

dZ
0 =2 (1)
Because the lattice constant of the rutile structure is
a=0474nm and ¢ = 0.319nm [7], d, = 0.4 nm is a
good approximation. Then we see, for example, that d
becomes 4, 12.6 and 40 nm for 8 = 1%, 0.1% and
0.01%, respectively. For the construction of grains, let
us consider an array of parallel grain boundaries at
the surface; the boundaries being infinitely long and
withs'a uniform spacing, I, between them. Thus an
__@ff’fay of square grains of length, [, is formed from these

'g”parallel boundaries as depicted schematically in Fig. 1.

We also assume that the charged oxygens are all
concentrated on these square boundaries. Therefore,
the charge density, o, of a grain boundary is

— elj2d?
— — ebl2d? )

(o] =3
where e is the charge of an electron.
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Figure 1 Surface grain structure. Two sets of parallel grain bound-
aries with a uniform spacing, /, between them form rectangular
grains.
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Now we are ready to formulate the surface poten-
tial, &,. The potential from a single straight boundary
lying on the y-axis is

¢, = —(o/2ngy)In(x/x,) 3)

for 0 < x < x,. Here g, is the dielectric constant in air
and x, is a constant to be determined from the bound-
ary condition. We choose x4 = l/2 so that ¢, =0 at
the middle of the two parallel boundaries. Then

b = — (o/2rey)In(2x/1) )

for x < /2. This corresponds to the nearest neighbour
approximation; charges further than //2 have no influ-
ence on the potential. This would be a good approx-
imation, because an important potential is formed
only near the boundary 1 » x/x,. Considering the
periodic nature of the potential, it would be better to
replace Equation 4 with

b, = — (o/2ney)In(sinwx/1) (5
This gives the potential curve as shown schematically
in Fig. 2. For convenience, we expand the term
In(sinnx/!) as the Fourier cosine series

In[sin(nx/[)]

= (a2 + i acosumx/l)  (6)

= @/ sz In(sin tx/l)cos2umx/Ndx  (7)

where m is the harmonic number.
Integration of Equation 7 can be carried out with
the help of the following formula:

j i cos(2mx) In(sinx)dx = — (m/4m) (8)

]
and yields a,, = — 1/m and a, = — 1.38629%4.

2.2. Bulk potential of one-dimensional
boundaries

Let us assume that the donor concentration, Ny, is
constant throughout the film and that all of them are
singly ionized. For parallel boundaries along the y-
axis, the bulk potential ¢, is uniform along the y-axis
and it must satisfy the following Poisson’s equation in
the region where electrons are depleted

V2igy(x,2) = — (eNy/e) ©®)

Figure 2 Surface potential of Equation 5. Charged grain boundaries
extend parallel to the y-axis.
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where € is the dielectric constant of the film. The
boundary condition is

¢b(x>0) = d)s (10)

To solve Equation 9, we make use of the principle of
superposition and assume

Polx,2) = p1(x,2) + Ppal2) (11)
Vi (x,2) = 0 (12)
V2hia(z) = —(eNy/e) (13)

It is natural to assume that ¢, has the same period-
icity with ¢, along the x-axis, thus we might try terms
like

duld) = ¥ dmFa@ (14

Gp1m = Pncos(2umx/l) (15)

Substituting Equations 14 and 15 into Equation 12,
we obtain

d’F(z)/dz? = (2nm/l)*F,(2) (16)
So we have
Fo(z) = Bz + C (17)
for m = 0, and
F,(2) = Q,exp( — 2mmz/l) (18)
formz= 1.
Equation 13 gives
Gp2(2) = — (eNy4/2e)z> + B'z+ C"  (19)

Thus, the solution of Equation 9 is expressed as the
sum of ¢, and &y, as

ZAexp

Pp(x,z) = 2nmz/l)cos(2rmx/1)
— (eNg4/2e)z* + Bz + C (20)

Equation 20 must satisfy the boundary condition of
Equation 10, so putting z = 0, it becomes

$p(x,0) = E Ancosmmx/ly + C  (21)
Comparing this with Equations 5 and 6, we find the

constants to be
oa,,

A, = ——
m Imeq (22
and
oa
cC = - =2
4me, (3)

Equation 20 then gives
¢b(x: Z) =
— (0/2ng0) Y, anexp(— 2nmz/l) cos 2nmx/l)
m=1

— (eNg4/2¢)z? + Bz — (0ay/4ng,) (24)

The constant B is determined from the simplified
condition that the potential must smoothly vanish to
zero at x =0 and z = z,. This condition would be
enough to obtain the right value of the potential depth



just beneath a boundary. So we have

$u(0,2z5) = 0 (25)
and
dd,(0, z4) - 0 (26)
dz

Trying Equation 26 in Equation 24, we have the
constant

B = —(o/gl) i a,mexp( — 2nmz,y/l)

+ (eNg4zy/€) (27)

Substituting this into Equation 24, we can solve Equa-
tion 25. We rewrite the solution referring to a, =
— 1/m and Equation 2. It gives

21 [(L/m) + @nzo/l)Jexp( — 2nmzo /1)

— (negd2Ny22/e0l — (a,)2) = 0 (28)

This gives z, and once z, is determined, the potential
in the xz-plane can similarly be obtained by substitut-
ing Equation 27 into Equation 24.

The result is

dmeyd3
- ( = °>¢b(x, 2 -

G o2 oo 22
(57 ol -72)

2
_ <M)Z(220 _a_h (29)

€0l 2

Equation 29 is a fundamental one correlating the
bulk potential to a depth of zero potential z, at the
cross-point, grain size [, surface coverage 6 and donor
concentration N.

In the real sensor operation, temperture 7 is gen-
erally kept in the order of 100 K. Therefore, we then
add the effect of thermal energy on the potential
depth. The condition is that thermal energy E of an
electron in one dimensional motion becomes equal to
the potential energy at the depth z. Then

kT

E = = = —edy(x,2) (30)

Inserting Equation 30 into Equation 29, we get

S [(1/m)cos@rmx/l)exp( — 2nmz/l)
" + (2nz/l)exp( — 2mmz,y/1)]
— (2medi Ny /e8)z(2z — 2) — (ag/2)
— (2neod3kT/e*0l) = 0 (31)
where a, = — 1.386294,

3. Analysis of the theory

3.1. One-dimensional boundaries

We are now ready to practice the numerical
calculation. Let us begin with the depth of zero

potential, z,, using Equation 28 with the constants
gp =885419x1071*Fm™!, £¢=13.5¢, [8], k=
1.38066 x 10723 JK ! and d, = 0.4 nm. Summing m
up to 500, we can obtain the potential depth z in the
xz-plane according to Equation 31; z corresponds to
the barrier depth against electrical conduction at elev-
ated temperatures. For a grain boundary of [ =
1000 nm with 6 = 0.08%, the barrier depth is
plotted in Fig. 3 as functions of distance and donor
concentration for 573 K. The values obtained are ac-
ceptable. It indicates that important potential spreads
only within the region very close to boundaries. For
application to square grains, it is necessary to consider
the conduction along a direction which crosses the
boundaries as illustrated in Fig. 4. When a film thick-
ness is larger than the barrier depth just beneath a
boundary (x = 0), which we denote by z =z, the
conduction electron can move freely at the bottom
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Figure 3 Barrier depth at 300 °C as functions of distance and donor
concentration for ! = 1000 nm and 8 = 0.08%.
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Figure 4 Schematic representation of barrier depth, film thickness
and motion of electrons in a direction which crosses boundaries. (a)
When films are thicker than barrier depth, electrons can move freely
at the bottom part. (b) Electrons are confined in a grain in films
thinner than barrier depth.
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part of the film (Fig. 4a). On the other hand, electrons
are confined in a grain in films thinner than z.. Thus
we see that the potential barrier depth, z,, corresponds
to critical film thickness below which conduction can-
not occur. Then we need to examine the effect of
temperature on this barrier depth.

The thermal term in Equation 31 is expressed, using
the number of electrons per unit boundary length, n,

10/242 (32)

as 2meod2kT/e*0l = ne kT /ne®. If we limit the range
of n from 0.25-25 electrons per nm, the thermal term
gives the largest value of 0.03429 when n = 0.25 for
T =573 K. The value is very small compared with
— ay/2 =0.693 15. In fact, temperature dependence
of barrier depth z, is small even at elevated temper-
ature of 800 K as shown in Fig. 5 for [ = 1000 nm and
0 = 0.08%. So, the following discussion assumes a
constant temperature of 573 K. Fig. 6 shows the bar-
rier depth as functions of grain size and donor concen-
tration at a given surface coverage of 6 = 0.008%,
0.08% and 0.8%, respectively. In the figure, upper and
lower limits of curves correspond to n = 0.25 and 25

n =

T T T L T

O
(8]
T
1

—- Ng=1025m-3

Zc
o
Y

T
1

LIS L
L3 )
ALy

26

m\_ §

20+

@ O
T
1

Barrier de

0 200 400 600 800
Temperature (K)

Figure 5 Temperature dependence of barrier depth for / = 1000 nm
and 6 = 0.08%.
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Figure 6 Barrier depth as functions of grain size and donor concen-
tration at 300°C. (a) = 0.008%, (b) 6 = 0.08%, (c) = 0.8%.

electrons/nm. The upper limit may seem a little denser
than expected from the line boundary model. How-
ever, real boundaries are more complicated than a
mere line, and so we prefer including such a denser
situation. It is evident that the barrier depth increases
rapidly with increasing grain size and decreasing
donor concentration. Fig. 7 gives the barrier depth as
functions of donor concentration and surface coverage
for I = 1000 nm. It is noted that a lower donor con-
centration gives a steeper increase in barrier depth
with increased surface coverage compared with a
higher donor concentration.

3.2 Rectangular grains

The principle of superposition tells us that the bulk
potential in rectangular grains, ¢,(x, y, z), can be ex-
pressed as the sum of potential from one-dimensional
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Figure 7 Barrier depth as functions of donor concentration and
surface coverage at 300 °C for / = 1000 nm.

grain boundaries crossing at right angles
Ou(x, 3,2) = Op(x,2) + by, 2) (33)

Thus numerical solution of the potential barrier depth
is readily obtained from our previous results. The
potential barrier curve surrounding a grain is illustra-
ted schematically in Fig. 8. Thus we come across the
same conclusion as in Section 3.1, that z_ corresponds
to the critical film thickness for electrical conduction
in any direction parallel to the surface. Having under-
stood the importance of the barrier depth, z., let us
now try to explain our experimental results in ultra-
thin SnO, gas sensors obtained against 0.5% H, at
300°C. However, the discussion is only qualitative,
because we do not have exact values of grain size,
donor concentration and surface coverage. So far,
experiments showed two prominent features in ultra-
thin sensors in air. One is a highly constant resistivity
in films thinner than about 10 nm [3] and the other is
a steeply increasing resistivity with annealing time [2]
as depicted schematically in Fig. 9. The former indic-
ates that the barrier depth, z_, is about 10 nm. For the
latter, we observed a resistivity increase of more than
four orders of magnitude when about 17 nm thick
films were annealed for 100 h at 500°C in air. The
slope became steeper with prolonged annealing time.
This enormous change can be interpreted as a resuit of
increased barrier depth. Suppose a film is several times

Figure 8 Schematic illustration of barrier depth variation under
grain boundaries in a rectangular grain.
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Figure 9 Schematic representation of resistivity behaviour in ultra-
thin SnO, films in air at 300 °C. (a) Resistivity increases steepy with
decreasing film thickness and remains at a high value when films
become thinner than about 10 nm [3]. (b} Resistivity increases more
and more sharply with prolonged annealing time at 500°C in
15-18 nm thick films [2].

thicker than z, at the beginning of annealing. Resistiv-
ity will increase with increasing z, up to a depth a little
smaller than about 17 nm. Further increase in z, will
cause a steeper increase in resistivity, as experiment
revealed. Increase in z, is a result of grain growth,
donor annihilation or increased surface coverage after
annealing, as Figs 6 and 7 predict. It is not certain
whether or not the surface coverage increases by an-
nealing. For further discussions, we need observation
of grain boundaries and detailed electrical measure-
ments to determine the donor concentration and
mobility in ultrathin films.

4. Conclusion

A potential barrier model is proposed for ultrathin
SnO, gas sensors. The model assumes rectangular
grain boundaries on which all ionosorbed oxygens
concentrate. Potential in the film is expressed as func-
tions of grain size, donor concentration and surface
coverage. The model yields an acceptable value of
potential barrier depth which corresponds to critical
film thickness. Below the critical thickness, electrical
conduction parallel to the surface becomes impossible
and electrons are confined in a grain. The potential
barrier depth becomes larger with grain growth,
donor annihilation and increased surface coverage.
The model predicts a high resistivity for films thinner
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than a critical value and a larger rate of increasing
resistivity with prolonged annealing time for films sev-
eral times thicker than the critical thickness initiaily.
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